На XVI Международной Жаутыковской олимпиаде белорусские учащиеся завоевали 23 медали. Об этом БЕЛТА сообщили в пресс-центре Министерства образования.
"Всего в XVI Международной Жаутыковской олимпиаде приняли участие 622 учащихся в составе 84 команд из 20 стран мира: Армении, Азербайджана, Беларуси, Болгарии, Грузии, Дании, Казахстана, Кыргызстана, Монголии, Непала, Норвегии, ОАЭ, России, Сербии, Таджикистана, Туркменистана, Турции, Узбекистана, Украины, Швеции. Беларусь представляли 26 учащихся, завоевавших во время соревнований 23 медали: 6 золотых, 6 серебряных, 11 бронзовых", - рассказали в пресс-центре.
Золотых медалей удостоены Ярослав Борисов (11-й класс, гимназия №8 Витебска), Андрей Костяной (10-й класс, гимназия №51 Гомеля), Станислав Дамасевич (10-й класс, Центр юных пожарных Мозыря), Андрей Мищенко (11-й класс, Центр юных пожарных Мозыря), Сергей Процкий и Павел Санкин (оба - 11-й класс, лицей БГУ).
Серебряные медали завоевали Григорий Бараболя и Егор Кучар (оба - 11-й класс, Центр юных пожарных Мозыря), Константин Сегодник (11-й класс, гимназия №8 Витебска), Дмитрий Горовой (10-й класс, лицей БГУ), Роман Свистунов и Арсений Холод (оба - 11-й класс, лицей БГУ).
Бронзовыми медалями награждены Виктор Маковский, Николай Юдин, Андрей Далецкий (все - 11-й класс, гимназия №2 Витебска), Алексей Ульянов (11-й класс, гимназия №8 Витебска), Константин Смирнов (10-й класс, гимназия №1 Витебска имени Ж.И.Алферова), Алексей Бруек (11-й класс, гимназия №51 Гомеля), Владислав Максимчук (10-й класс, лицей БГУ), Александр Мазаник, Анастасия Стовбчатая, Никита Хомич и Даниил Юршевич (все - 11-й класс, лицей БГУ).
В состав международного жюри вошли ученые и преподаватели из Беларуси, Казахстана, Болгарии, Армении, Грузии, Узбекистана, России. Жаутыковская олимпиада школьников по математике, физике и информатике проводится ежегодно под эгидой Министерства образования и науки Казахстана. В этом году она проходила с 8 по 14 января на базе Республиканской физико-математической школы города Алматы. В интеллектуальных состязаниях принимали участие команды из разных стран, состоящие не более чем из десяти победителей заключительного этапа национальной олимпиады по соответствующему предмету. Согласно условиям, результаты двух туров олимпиады суммируются в личный зачет по каждому предмету, а рейтинг команды определяется суммой индивидуальных результатов участников.